TuneStudio2560

8-Bit Song Creation & Playback Device

v1.0.0

By Jacob Luvisi
September 2021

J

() GitHub S

2560
https://github.com/devijluvisi/TuneStudio2560

https://github.com/devjluvisi/TuneStudio2560

Table of Contents
1. Table of Contents
2. Project Introduction
3. Crash course on Arduino Mega 2560
4. Libraries & Software Used
5. TS2560 Design Philosophy
6. Hardware
6.0: Introduction
6.1: Arduino Microcontroller

6.2: Speaker
6.3: Liquid Crystal Display

6.4: 4-Digit 7-Segment display
6.5: SD Card Module

6.6: RGB Led
6.7: Extraneous Parts
6.8: Diagrams
7. Software
7.0: Introduction

7/.1: Pre-Design

7.2: Performance & Program Size
7.2.0: Prelude

7.2.1: Optimizations

7.2.2: PROGMEM

7.2.3: Performance Modes
7.3: Low Level Overview

7.3.0: Prelude

7.3.1: Main Class

7.3.2: Main Header File

7.3.3: LCD & Segment Display

7.3.4: Program States

7.3.5: Notes & Pitches

7.3.6: Songs

7.3.7: SD Card

7.3.7: Additional Information
7.4: Debugging

7.4.0: General Information

7.4.1: Debug Macro
7.4.2: Performance Metrics Macro

7.5: Unit Testing
7.5.0: Prelude
7.5.1: How to use
7.5.2: Future Plans
8. Reference Website
9. MakerStudio2560
9.0: Introduction & Purpose
9.1: How to Use
9.2: Code
9.3.0: Prelude
9.3.1: JavaScript Adoption
9.3.2: Basic Overview
9.3.3: Documentation
10. Project & Code Documentation
10.0: Prelude
10.1: Inline Documentation
10.2: GitHub Wiki
10.3: Public Doxygen Documentation
10.4: YouTube Tutorials
11. Future Suggestions
12. Conclusion

13. Ending Note

Subsections described with "“.” (ex. 9.1).
Children of Subsections have a 13pt font compared to 14pt. (ex. 7.3.0)

Project Introduction

First and foremost, TuneStudio2560 is an 8-Bit song playback and creation
device created for the Arduino Mega 2560 microcontroller. Designed from
the ground up, the device was made to execute the flawless creation of
simple 8-bit linear songs via user interaction. The project was first

idealized around June of 2021 but the first working version would not be
released until August 19, 2021. With the use of external libraries, months of
work, and careful planning TuneStudio2560 was able to make it to its
current state without any major bugs or issues.

Along with the creation of songs, TuneStudio2560 has also been designed
to playback such songs to the user. Songs which the user creates on their
device are saved to a microSD card where they can be accessed and
edited for future use. The usage of a microSD card allows much more
flexibility in the storage of songs compared to on board storage such as an
EEPROM (1-4KB in size). When a user wishes to play a song back they
can use TuneStudio2560’s custom inbuilt media player which allows the
pausing, rewinding and fast forwarding of songs. The media player also
displays helpful information about the song on various time intervals to the
user as well as a progress bar to show the user how far they have
progressed into the song.

The creation of songs on TuneStudio2560 is simple and easy to
understand for new users or people familiar with musical concepts. The
device uses the standard chromatic scale for applying notes to a song.
Yes, that means pitches such as GS2 (G#2) or F1 are used when creating
songs, making the process much easier to understand then a complex
proprietary method. When a song is played back, the application converts
the pitches (which have been saved in persistent storage such as a
microSD) to frequencies which can be played by the on board passive
buzzer.

In order to display information to the user, three methods of
communication are used. First, a Liquid Crystal Display is used for visually
showing the user textual information related to the current context of the
program. Examples of usage for the LCD include: creating a song, where
the LCD displays the individual pitches that the user has added to the
song, as well as when playing back a song, where the LCD shows the user
information such as the progress bar. The LCD also provides the user with
direct instructions and controls about how to create and playback songs.
Second, TuneStudio2560 uses a 4 digit wide 7-Segment display for
communication. The segment display is used when the user is creating a
song, where it displays the current pitch the user has selected. This allows
the user to know what pitch they are about to add to their song. Third, the
device utilizes an RGB LED. The variable brightness controlled RGB LED
lights up different colors depending on a variety of factors. The RGB LED
provides the simplest way for the user to get information about something
important without even having to read a display.

When a user has saved their song to the SD card, they can edit the song
later on their personal computer or on MakerStudio2560.
MakerStudio2560 is an interactive JavaScript client-side song creation and
playback tool similar to TuneStudio2560. MakerStudio2560 is completely
backwards compatible with the file format of TuneStudio2560, which
means that any songs you create in TuneStudio2560 can be edited in
MakerStudio2560 and vice versa. If MakerStudio2560 is not used, then the
user can open the individual song files of the SD card directly on their
computer thanks to the usage of cross-platform FAT16/FAT32 file
formatting. Each song is reserved to its own file and the individual song
files use the .TXT file extension meaning they can be easily opened on
modern computers.

TuneStudio2560 is a device with a diverse set of utilities to allow for the
creation of simple but catchy songs. All of this, on a mere microcontroller.

https://devjluvisi.github.io/TuneStudio2560/MakerStudio2560.html

Crash Course on Arduino Mega 2560

(and compatible)

As you have probably read at this point, TuneStudio2560 utilizes the
Arduino Mega 2560 as its primary source of function. Why? The Arduino
Mega 2560 provides a great balance between performance, low power
consumption, and a large flexible program space. Due to the use of the
Mega, along with a few external and publicly available libraries,
TuneStudio2560 is accessible to many hobbyists and enthusiasts.
TuneStudio2560 utilizes all open-source code only libraries, meaning that
you can create the full featured TuneStudio2560 for free right now (as long
as you have the hardware that is). If it was not for the Arduino ecosystem,
then such a diverse set of libraries would not be available and the project
would be less accessible to everyone.

Running on an 8-Bit AVR Microarchitecture, TuneStudio2560 is efficient
enough to run on battery for an extended period of time. In case you forgot
your facts about the Arduino Mega 2560, here is some information about
how this microcontroller powers both the software and external hardware
which makes up TuneStudio2560.

Core Specifications:'

e CPU: 16 MHz 8-BIT AVR

e 8192 Bytes of SRAM

e 256KB of Flash Memory

e 4096 Bytes of EEPROM

e Power Consumption: 70-200mA
Price: $16-$18 (Clone), $39.95 MSRP
Notable Features:

- 12C Capability

- SPI Capability

- 54 Digital 10 Pins (15 PWM)

' View r

https://diyi0t.com/arduino-mega-tutorial/

- Analog Input/Output Pins

The entirety of TuneStudio2560 runs on a 16MHz processor and (as of
v1.2.2-R4) utilizes as little as only 1300 Bytes of RAM?. All in all,
TuneStudio2560 does not even make use of all of the Arduino Mega
2560’s diverse feature set. A possible port to future microcontrollers such
as the Arduino Uno is possible due to continued code shrinkage and
optimization. Even though TuneStudio2560 is currently only verified
working on AVR architecture, ports to ARM microcontrollers® are currently
in their pre-design process but are not confirmed.

The Arduino Mega 2560 provides one of the most user-friendly
experiences of any microcontroller on the market and its diverse range of
features is one of the major reasons why TuneStudio2560 exists today.

Check out an Arduino Mega 2560 for yourself.

Some Arduino Mega 2560’s come bundled with other electronics in a kit, similar to this
one.

2 TuneStudio2560 is estimated to consume about 1300 Bytes of SRAM at compile time (according to
PlatformlO). Maximum RAM consumption has been measured to be about 1.7KB-1.8KB during program
run time.

3 Current ports to ARM microcontrollers are not confirmed. The current microcontroller ports which are
being considered are ports to the RP2040 (Raspberry Pi Pico) and the Teensy 4.1.

https://store.arduino.cc/products/arduino-mega-2560-rev3
https://www.amazon.com/EL-KIT-008-Project-Complete-Ultimate-TUTORIAL/dp/B01EWNUUUA/ref=sr_1_5?dchild=1&keywords=Arduino+Mega+2560&qid=1631758333&sr=8-5
https://www.amazon.com/EL-KIT-008-Project-Complete-Ultimate-TUTORIAL/dp/B01EWNUUUA/ref=sr_1_5?dchild=1&keywords=Arduino+Mega+2560&qid=1631758333&sr=8-5

Libraries & Software Used

TuneStudio2560 takes advantage of the Arduino’s wide open source library
community. There are two types of libraries used in TuneStudio2560:
internal libraries, which are directly included in the GitHub and integrated
into the code, and external libraries which must be downloaded by the
end user in order to compile the program. All external libraries used are
available on the PlatformlO library marketplace.

The following is a direct list of all internal and external libraries which are
used in TuneStudio2560.

Internal
e digitalWriteFast
e Newlone
External
e LiquidCrystal 12C
e SdFat
e SevSegShift

° Uni’ty4

Software
e Visual Studio Code
e PlatformlO Extension

Technologies
o C++11 GNU

e Arduino Framework
o Git
e Doxygen

* Unity is a unit testing library for C which can be ingrained in PlatformlO. Unity is not required for
compiling the program.

https://platformio.org/lib
https://github.com/NicksonYap/digitalWriteFast
https://forum.arduino.cc/t/newtone-library-plug-in-replacement-for-tone-library-better-smaller-faster/140506
https://platformio.org/lib/show/576/LiquidCrystal_I2C
https://platformio.org/lib/show/6609/SdFat%20-%20Adafruit%20Fork
https://platformio.org/lib/show/7089/SevSegShift
https://github.com/ThrowTheSwitch/Unity
https://code.visualstudio.com/
https://platformio.org/
https://gcc.gnu.org/projects/cxx-status.html
https://www.arduino.cc/
https://git-scm.com/downloads
https://www.doxygen.nl/index.html

TuneStudio 2560 Design Philosophy

Now that we have been introduced to TuneStudio2560 and its basic
functions, let us dive deeper into the mindset and design patterns which
were planned when designing this project, as well as the overall
functionality of the device.

TuneStudio2560 is both a creation of hardware and software, and such
components must be able to interact with each other to achieve the goals
of the device and provide a fluent user experience. TuneStudio2560 is
constructed on top of two breadboards (see images). In general, there
must be a way for the user to receive feedback, so an LCD is connected to
a display which provides text feedback. However, the user must also be
able to physically communicate with the device. To achieve this, two
components are used, standard switch buttons and a 10K potentiometer.

The switch buttons allow the user to directly interact with the device and
perform different actions depending on what state the program is in. The
switch buttons serve two main purposes. The switch button's first purpose
is to help with navigation. Two switch buttons on the device known as the
“ADD/SELECT” and “DEL/CANCEL” buttons are used to navigate from the
home screen to the various “modes” of the program. Different modes allow
the user to perform different tasks (for example, one mode would be to
create a song and another would be to play it back). Second, the switch
buttons are used to create songs and perform additional actions. The
device has eight (8) switch buttons in total. These eight buttons each have
different functionality in various modes (see Figure 1). These eight buttons
are each sanctioned into two separate groups, “control” and “musical”.
The “control” group buttons are used for navigation and user actions while
the “musical” group buttons are used for creation of music and sometimes
additional actions. Figure 1 displays what buttons have which names and

http://google.com

where they are located on the breadboard. A brief description of each of
the buttons is written below.

TuneStudio2560 is an interactive application, meaning that users can
perform a variety of tasks on it. In the code, we must create a separation
of these different tasks or “states” a user can be in. For example, one state
could be to create a new song, another could be a state to view
instructions for how to playback songs, etc. What is known as a Program
State defines the separation of different functionality throughout the
program. There are 5 program states in TuneStudio2560. Main Menu
Listening Mode Instructions, Creator Mode Instructions, Listening Mode,
Creator Mode. Creator Mode represents the “state” where the user can
create their own songs, play them back, and save them. Listening Mode
represents a “state” where a user playback songs, pauses them, rewinds,
fast forwards, and deletes them. Listening Mode plays songs which were
previously made in Creator Mode.

The hardware for playing back notes and songs is simple. A piezo buzzer
is used to generate a square wave and play back a specific frequency in
hertz. Songs are constructed in TuneStudio2560 as a “list of hertz”. When
a song is first created it has no hertz in it, but as notes get added, a linear
list of hertz to play grows. In order to make the process of creating songs
easier, users do not have to deal with the raw hertz values (ex. 31, 158).
Instead, every possible frequency which can be played in TuneStudio2560
is represented in its chromatic form via a human readable pitch. Instead of
adding the frequency “233” to a song, a user can add the pitch “AS3”
(A#3) instead. This allows users to remember previously learned
standardized pitches when making a song, instead of utilizing a proprietary
standard. Because the piezo buzzer cannot read regular human strings
and letters the pitch must be converted back to a frequency when the
song is played. The program can automatically convert these pitches into

frequencies and the frequencies back into pitches using a lookup table of
values.

TuneStudio2560 would not be fun if everytime you restart the application
all your songs are gone. To circumvent this, TuneStudio2560 takes
advantage of its SPI Bus and uses a microSD card module for non-volatile
storage. This microSD card stores every song in TuneStudio2560 that the
user saves. As mentioned in the previous paragraph, all of the notes are
saved in pitches (ex. AS3) instead of frequencies. When the file is selected
for playback, the program converts these pitches to frequencies. Each
different song is stored as a different document using the “.txt” file
extension, making editing easy on a PC.

Control Group®
e ADD/SELECT -> Responsible for both navigation as well as the

confirmation of prompts. In general, this button can be thought of as the
“enter” button on a standard QWERTY keyboard.

e DEL/CANCEL -> Used similar to “ADD/SELECT” button but usually
performs the opposite action as it. This button is also used for navigation
but is usually used to reject prompts or to remove notes from a
song/delete files.

Musical Group®
e Tune Button 1

o Green LED
e Tune Button 2

o Blue LED
e Tune Button 3

o Red LED
e Tune Button 4

5 Check out the wiki for a list of full actions that all of these buttons can do for each program state.
¢ Note that the language of “Tune Button” is also interchangeable with “Tone Button”. Sometimes these
words are used to define the same object.

10

o Yellow LED
e Tune Button 5
o White LED

The various buttons in the musical group are most commonly used for
adding notes to a song when creating one. Another purpose for these
buttons is to act as additional control buttons in certain states’.

" Check out user guide for a full list of actions that each button can perform in different states.

11

Hardware

This section is a “"parent section” meaning that it has one or many “child” sub-sections. Each of these subsections is
defined by having a decimal number as shown in the Table of Contents.

6.0: Introduction

Now that the design of TuneStudio2560 as well as some basic
functionalities have been covered, it is finally time to get into what makes
TuneStudio2560 work. Schematics to the construction of TuneStudio2560
are provided in the figures at the end of this section. The following list
describes the individual parts of TuneStudio2560.

Parts List:

The parts list below is also provided on GitHub.

For a detailed description of connections please visit the “Build It” section on the Wiki.
Last Updated: 9/11/2021

Arduino Mega 2560 (or compatible)

2x Full Size Breadboards

1x Passive Piezo Buzzer

5x Colored LEDs (GBYRW

1x RGB Led

8x 220Q) Resistors

4x 330Q) Resistors

1x 10K Potentiometer (or similar)

8x Standard Switching Buttons

1x 20x4 Liquid Crystal Display w/ 12C Protocol
1x microSD Card Module

2x SN74HC595N Shift Registers (or compatible)
1x 4-Digit 7-Segment Display (Common-Cathode)
Wires

The above list of parts represents everything that makes TuneStudio2560
function. The following subsections will dive into the individual parts
specifications and functionality within the program.

12

https://github.com/devjluvisi/TuneStudio2560/wiki/Build-It

6.1: Arduino Microcontroller

As discussed previously in the “Crash Course on Arduino Mega 2560” the
Arduino microcontroller plays the biggest role in TuneStudio2560’s
functionality, so much so that it is in the name. The specific microcontroller
which was used for the first prototype release for this project is an Elegoo
Arduino Mega 2560 Rev. 3. Official versions of the Mega 2560 can be used
and bought directly from the Arduino Store but clones can also work as
well.

The Mega 2560 provides a large SRAM space to store the various types of
data and data structures in TuneStudio2560. Although initially required,
continued optimizations throughout releases have allowed
TuneStudio2560’s working RAM to be less than 1.8KB at any point during
the program cycle. This means that future releases to Arduino Uno boards
are possible but are currently not confirmed. The program space of the
Mega 2560 was also a helpful utility as 256KB of space was a large area to
store both the code itself as well as a handful of PROGMEM variables.
This too, has been released with versions and the latest release consumes
only 29KB of program space®.

TuneStudio2560 uses a significant amount of program memory to store
PROGMEM constants. Such PROGMEM constants (as will be discussed
later in this document) consume a significant amount of space at the
benefit of reduced static SRAM usage.

8 Release v1.2.2-R4 consumes approx. 29974 bytes of program space when the PRGM_MODE macro is
set to “0” (small size priority).

13

6.2: Speaker

TuneStudio2560 utilizes a passive piezo speaker to play frequencies. This
piezo speaker takes numerical 16-bit unsigned integers in the code and
converts them to a sound by vibrating internal components of the speaker.
The piezo speaker generates a square wave and, in TuneStudio2560, can
range between 31Hz (BO note) and 3957Hz (B7 Note). The speaker can be
connected to a digital pin or an analog pin, a PWM connection is not
required for the speaker to operate normally.

The speaker has two primary limitations. First, the speaker cannot be
volume adjusted and will play at the same “volume” all the time.
Sometimes the speaker may produce “quieter” sounds but this only
occurs due to varying tones, not a volume reduction. Second, only one
speaker can be connected to the Arduino at any moment. This makes
overlapping sounds or stereo sounds impossible (limiting the musical
capability to a linear 8-bit song).

The speaker is operated using the NewTone internal library. Although the
NewTone library will be discussed in greater detail further down the
product brief, it replaces the traditional tone() function when playing
sounds.

6.3: Liquid Crystal Display

In order to communicate with the user, a Liquid Crystal Display (LCD)
display is used to provide the primary form of communication (text). The
LCD used in the project has 20 columns and 4 rows. A taller than usual
LCD was picked as it is best for displaying large amounts of text on the
screen at once and is also much less cramped when navigating menus.
Theoretically, a smaller 16x2 LCD (the most common) could be used by
adjusting the LCD_ROWS and LCD_COLS macros in tune_studio.h but
there would also need to be some software changes to accommodate this.

14

The display provided uses an 12C protocol to communicate with the
Arduino. The 12C protocol is preferred as it uses less wires then a parallel
setup and since the 12C bus is not benign utilized by any other device it is
optimal to simplify the wiring to the Arduino as well. The display is
controlled through the LiquidCrystal_I2C library (at a low level) and has
custom program methods written for it to display text and scrolling text.
Such methods are available in the software documentation.

6.4: 4 Digit 7 Segment Display

A 4-digit 7-segment common cathode display is connected to the Arduino
to provide additional information to the user separate from the Icd,
specifically in regards to creating songs. When a song is being created, the
LCD becomes cluttered with many of the notes the user has added. In
order to show the user what the current note they have selected is without
showing it on the LCD, a segment display is used.

The segment display is connected directly to 2x SN74HC595N shift
registers and controlled through the SevSegShift library. This is done in
order to reduce the amount of pins required to connect to the Arduino
(only 3 pins needed for the two shift registers). The two shift registers are
connected in parallel and control various parts of the segment display.

6.5: SD Card Module

A microSD card module is used in TuneStudio2560 to interface with the
microcontroller and to maintain persistent storage of songs. The microSD
card module requires that SD cards be formatted as FAT16/FAT32 in order
to function properly. The module is wired to the Arduino via the SPI Bus for
fast transfer speeds. The SdFat library provides high level control over the
SD card and by default is clocked at a 1MHz transfer rate for maximum
compatibility among SD cards and SD modules. Prior to v1.2.1-R3 a

15

standard “SD” library was used which was inefficient and took up a large
amount of SRAM and program space.

A microSD card is used on the Arduino in order to provide a large space to
store collections of songs. In contrast, usage of the Arduino’s internal
EEPROM would result in a very limited space and would also wear out the
EEPROM over time. SD cards also provide a convenient way to connect
directly to a PC, which they support.

Because the microSD card uses FAT32 formatting, it can be transferred
directly from the Arduino onto a PC. The PC can read each of the
individual files on the SD card and even edit them. Editing files on a PC will
still allow them to playback on the Arduino as long as the proper format of
the file was maintained. TuneStudio2560 ignores directories when reading
the SD card and only focuses for files on the root “/” directory. Each song
the user creates is stored as an individual file on the SD card using a .TXT
extension for wider compatibility. The file saved must have a name of no
longer than 8 characters and must follow the standard format for
TuneStudio2560 songs.

A-Z, 0-9 and underscores only.

If a song file on the SD card is bad, then the Arduino will blink its status
LED red and tell the user there has been an error. The Arduino will not
crash and will recover from the error and return back to the song selection
screen. By default, TuneStudio2560 ignores all files on the SD card with
invalid file names or extensions (such as .pdf for example).

When the SD card is first loaded, TuneStudio2560 will create a
“README.TXT” file on the root directory which includes directions about
how to use the microSD card and how to edit song files. If the
“PRGM_MODE” macro of the program is set to “0” (low program size) then
only a part of the README will be generated.

16

6.6: RGB Led

The RGB status LED is the simplest form of user communication
on TuneStudio2560. The RGB LED will flash different colors to
signal various signs to the user. There are very few colors the
RGB led will flash and only three primary signals should be
known.

1. The RGB status LED will blink when the program
initializes. The LED will blink “X” number of times
depending on the current PRGM_MODE.

a. 1 Blink = PRGM_MODE ==
b. 2 Blink = PRGM_MODE ==
c. 3 Blink = PRGM_MODE ==

2. The RGB status LED will blink or stay RED when the
program encounters an error.

a. SD Card Initialization Error (SD Card not found at
startup)

b. Attempt to read a bad song file.

c. Any other potential error.

3. The RGB status LED will blink or stay BLUE when the user
has selected the OPTION button and the program is awaiting
further input. The OPTION button (specifically in creating a
song) signals that the user wishes to perform an additional
action by pressing the select, cancel, or a tune button. When
BLUE the program is telling the user that the next input they
press will perform an action with the option characteristics®,
if that button has any. This state can be cancelled by
pressing the option button again.

° As described in the design philosophy section, “optional characteristics” refer to when pressing a button
will perform a different action than usual because the OPTION button was clicked. This idea can be
thought of as pressing the CAPS LOCK button on a keyboard or the CTRL button.

17

6.7 Extraneous Parts

Some parts of TuneStudio2560 go under “extraneous parts” as they are
usually not significant enough to get a dedicated subsection. A notable
“extraneous part” includes the standard switch button as previously talked
about. The switch buttons are each connected one side to ground and the
other side is connected to a pin on the Arduino. This means that whenever
a button is pressed it will signal “LOW?” to the Arduino instead of “HIGH”.
The 5 tune buttons on the Arduino are each electrically wired to various
colored LEDs. These LED’s light up whenever the tune button is pressed
regardless of the current state or context. These LEDs are not controlled
by code, only through the circuit. Each of these LED’s have their anode
connected to 5V constantly via a 220Q resistor. The cathode is connected
to one side of the tune button which is not connected to ground.
Whenever the tune button gets pressed, it bridges the row of the
breadboard to ground therefore allowing electricity to pass through the
LED.

6.8 Diagrams:
There are two provided diagrams (excluding real life operational pictures):

Visual Diagram

18

Electrical Schematic
WORK IN PROGRESS

19

-

) %

%

BHHH

3323;

o o e

CO0 00 000

o eCT e ToecC o

iml

_: O LR R IR RR AR

: _____L_i_:h#__: ____

W0 Cet
Wk

20

Software

This section is a “"parent section” meaning that it has one or many “child” sub-sections. Each of these subsections is
defined by having a decimal number as shown in the Table of Contents.

7.0: Introduction

The software portion of TuneStudio2560 is the largest and most significant
part of the device and therefore requires the most documentation to
understand. The “Pre-Design” subsection will describe the thought
process prior to developing software as well as the tools used. The
following subsections will be very in depth descriptions of the classes,
their functionalities, and how they work together. It should be noted prior
to reading that all methods, classes, global variables, and files used in the
program are thoroughly documented using Doxygen as well as inline
comments. It is highly recommended to view the code comments or
doxygen-generated website when reading through this section. The
software that works with TuneStudio2560 is always in active development
and being changed, it is also important to keep up with current and latest
commits on the GitHub for up to date information.

7.1: Pre-Design

When developing TuneStudio2560, the decision was made to use Visual
Studio Code and the PlatformlO extension instead of using the standard
Arduino IDE. This decision was made because in order to keep the
program modular, a variety of files and classes would be constructed. The
Arduino IDE, as of now, is very limited in its ability to handle multiple files
in one project. The usage of PlatformlO also allows developers to use
direct AVR libraries as well as standard C++ functions which are not
available to users on the normal Arduino IDE.

TuneStudio2560 is developed using C++ directly, throughout
TuneStudio2560’s codebase many C++ standard methods are used such

21

http://google.com
http://google.com

as clases, inheritance, templates, and heap allocation'®. Such methods
allow the program to be easier to understand on a higher level by
abstracting away some of the harder concepts in exchange for just a class
(like a Song).

When developing TuneStudio2560, the idea that the code base should be
sectioned off in separate parts proved to be very important. The solution
was to divide the program based on different “program states”. Each
program state acts like its own little program and will act as though the
other states do not exist. Each program state handles user input
differently, displays differently to the lcd, and handles just about everything
different. The main class (main.cpp) is still run and holds many of the utility
classes that many of the program states need. When a user navigates to
different areas in the program (ex. Going from Main Menu to a song
creation) they are really changing a global program state variable. The
loop() method on the Arduino constantly runs the current global program
state variable’s loop method to perform the actions of whatever the
program state wants to achieve.

Songs are the most obvious area of TuneStudio2560 which had long
thought put into them. In the current release as of this paper, songs are
controlled through one global “Song” variable. This song variable can be
cleared, have notes added to it, played back, etc. Every time the program
has finished using a song, the song variable is simply cleared of its data.
Every song variable holds an array (list) of integers which represent various
frequencies (in Hz). Whenever a song gets played back, the program
iterates through the array and plays each of its frequencies on the speaker.
Every song also has its own delays (toneDelay and tonelLength) which

19 Although dynamic heap allocation is used in TuneStudio2560, its usage is very limited. Prior to
v1.2.0-R3, Song objects were dynamically created. Although usually fine, it would cause occasional heap
fragmentation and on smaller microcontrollers, the SD card would no longer function properly. Currently,
dynamic allocation is only used for the ProgramState.

22

describe how long the delay between each note should be (toneDelay) and
how long each note should play on the speaker (toneLength).

When a user finishes creating the song we must save it to a more
persistent form of data storage such as an SD card. When a user saves a
song to an SD card, the program really goes through the current global
song variables list of frequencies and converts them to human readable
pitches (ex. FS2). These human readable pitches are then stored in the
song file and when the user wishes to play the song file again the program
converts these human readable pitches into numbers again by using a
lookup table.

Similar design patterns are found throughout TuneStudio2560. The general
rule is to remember that the main.cpp class contains the first setup() and
loop() methods as well as utility methods for each class. Then each
ProgramState represents a sectioned off piece of code (only one
ProgramState runs at any time) which has its own way of dealing with user
input, etc.

One major problem of storing the large pitch-frequency look up table is
that it requires a large amount of SRAM to store. As a result, all of the
strings in the lookup table are stored in Program Space (PROGMEM)
which allows the device to act as though the look up table is stored in
RAM when it is really stored in Flash. A pitches.h file stores the
PROGMEM representation of every human readable pitch which is a part
of the lookup table.

Brief Description of important files in the program directory:

(There are other files besides the ones listed here, but these are the most important files to take notes of...)

- src/ All of the main .cpp code files.
- lib/ Internal libraries.
- include/ Header files.

23

- src/studio-libs/states - Where all of the individual ProgramStates are
Stored.

- “main.cop” - Where the program starts, includes utility methods for
each ProgramState.

- “state.cpp” - Includes the main ProgramState parent class that all of
the ProgramStates inherit from.

- “song.cpp” - A representation of the song object.

- “tune_studio.h” - A header file which contains all of the important
constant data and PROGMEM data. Shared by every class. Defines
methods for the main class.

- “pitches.h” - A header file which contains nothing but every string
representation of a human readable pitch (in PROGMEM)(85 total).

7.2: Performance & Program Size

7.2.0 Prelude

Measuring performance and program size is an important aspect of a project on
a microcontroller. Ensuring that code is optimized to the limit of a programmer's
knowledge is essential for ensuring that code works fast, efficiently, and fits
within the size limitations. Luckily, TuneStudio2560 is a very efficient program
and fits even below the Arduino Uno’s requirements. This subsection will
describe the importance of performance optimizations, program size, how to
adjust program sizes, program modes, as well as methods to improve
performance.

7.2.1 Optimizations

Many optimizations have been made throughout TuneStudio2560’s first release.
Although there have been many code size and speed improvements there are
still many potential optimizations in TuneStudio2560. For one, there are two
methods to improve the speed of the conversion of human readable pitches to
16-bit frequencies and vice versa. The following displays the current code of
these methods. (Comments and macro checks removed to simplify)

24

note t pet note from freq(uintls t frequency) {
if (freguency == PAUSE_NOTE.frequency) {
return PAUSE_NOTE;

©; i < TONE_BUTTON AMOUNT; i++) {
@; j < TONES_PER_BUTTON; j++) [
{ & PROGRAM NOTES[i].notes[j].fregquency) == frequency) {

* pitch = pgm_pcpyri{i, j);

return note_t
pitch,
frequency

il J

return EMPTY NOTE;

The above code block is a current method in v1.2.2-R4 responsible for
converting integer frequencies to a human readable pitch (note struct). This code
could be improved in two ways.

1. Change the iteration algorithm from linear to a more efficient one.

2. Add a “cache” variable.
The second one in particular is an interesting request. A static “cache” variable
could be added in the method and the cache could be whatever the last return
value of the method is. Then, every time the method executes, the method will
run a conditional branch to check if the frequency matches that of the cached
note struct, and if so, return the pitch of that cached note struct. This saves the
entire pain of the for-loop. However there are two downsides, one is increased
SRAM usage due to the static variable and two is the fact that if the cache
“misses” then the program checks an extra branch without needing to, therefore
wasting energy. In this case however, adding a cache variable would be
beneficial because this method is frequently called in the CreatorMode, and
because it is run thousands of times a second to update the segment display, a
cache variable would actually be a net positive because a large portion of

25

executions of this method will produce the same result anyways. This is one
example of an optimization trade off in TuneStudio2560.

An example of an optimization which has been made late-stage is the decision
to convert Song objects in the program from pointers (dynamic) to a single static
global reference. The first was used because it provided a cleaner and more
“object-orientated” way of making/removing songs. However because the
Arduino has no memory management code, this can create problems on the
heap over time. The newest method was the use of a global “prgmSong”
variable. Now songs are no longer dynamically allocated, rather a single object
is addressed whenever a song needs to be changed/played. Whenever the
method is done with the song, instead of deleting it from memory, the song
instance is simply “cleared”.

7.2.2 PROGMEM

PROGMEM™" is a frequently used keyword in TuneStudio2560. PROGMEM
describes the desire to move the data in a variable from RAM to FLASH. When
TuneStudio2560 is compiled, global variables are sent to SRAM unless they are
requested to remain in PROGMEM. Because PROGMEM is read-only, variables
stored in PROGMEM cannot be changed during the program cycle.

The most common use of PROGMEM in the application is in the “pitches.h” file
where each individual pitch string is stored in PROGMEM. This was required
because in microcontrollers with less than 2KB of ram, the program would crash
when trying to read an SD card. The PROGRAM_NOTES' global lookup table
took up too much SRAM. Although PROGRAM_NOTES was already flagged
with PROGMEM, it was storing pointers to strings; the string data was still being
saved inside of SRAM. “pitches.h” was made in order to force the
microcontroller to store BOTH the string data AND the string pointer in flash
memory. PROGMEM is key in TuneStudio2560 as without it, RAM usage would
be critical for smaller microcontrollers.

" PROGMEM documentation.

2 A lookup table of every pitch and frequency for every tune button. Stores a struct inside of a struct
inside of an array. The table is crucial as otherwise the program would not know how to convert
frequencies to pitches and vice versa.

26

7.2.3 Performance Modes

Performance modes, dictated by the PRGM_MODE macro, are another crucial
part of TuneStudio2560. The current performance mode of the program dictates
the program on how much SRAM and FLASH it should use. In layman's terms,
setting the PRGM_MODE to Zero (low space mode) will remove parts of large
strings or text in order to save space. It will also reduce data types where it can
and also reduce the maximum allowed size of songs (which saves SRAM). The
PRGM_MODE macro is located in the tune_studio.h header file where it can be
changed to 0, 1 or 2. The table below describes what happens when changing
the program mode.

Updated as of v1.2.2-RA4.

PRGM_MODE ==
RAM: [==] 15.9% (used 1300 bytes from 8192 bytes)
Flash: [=] 11.8% (used 29974 bytes from 253952 bytes)

PRGM_MODE == 1

RAM: [==] 20.5% (used 1682 bytes from 8192 bytes)
Flash: [=] 12.6% (used 32090 bytes from 253952 bytes)
PRGM_MODE ==

RAM: [===] 26.8% (used 2197 bytes from 8192 bytes)
Flash: [=] 12.7% (used 32306 bytes from 253952 bytes)

Increasing to a larger Program Mode will allow the creation of larger songs as
well as additional features and sometimes even faster performance. In general
Program Mode 1 is recommended by default for Arduino Megas as it is the most
balanced. Program Mode 0 generally reduces flash space by cutting out large
strings and parts of instructions. For example, the README.TXT files generated
on PRGM_MODE==0 are much smaller then README.TXT files generated on
larger Program Modes. It should be noted that increasing PRGM_MODE from 1
to 2 requires changing the “song_size_t” typedef in song.h from “uint8_t” to
“uint16_t” in order to accommodate larger song sizes.

In Addition to the previously mentioned performance mode, an additional macro
should be specified. This macro is “FAST_ADGC” which is automatically enabled

27

in PRGM_MODE==2. When FAST_ADC is enabled, the analogRead function in
the program executes noticeably faster than usual. This increases the lterations
Per Second (IPS) of CreatorMode and may help prevent flickering of the
segment display if the ProgramState was running too slowly previously.
Enabling FAST_ADC takes an extra 30-40 bytes.

7.3: Low Level Overview

7.3.0 Prelude

This subsection details the “lower level” details of the various components of
TuneStudio2560. Here, the code and program execution cycle is explained with
detail and C++/Arduino concepts are used liberally. It is recommended to view
the source code while going through this section.

7.3.1 Main Class

The program cycle begins in the main class “main.cpp” where the first setup()
and loop() functions are executed.
The file is defined as an organized structure.

- Include Tags

- Global Variables

- Global Extern Variable Definitions

- Interrupt/Delay Methods

- Main/Setup Methods

- Utility Methods
A variety of code comments in the file explain and divide the different sections
from each other.
First, global variables are defined. These variables include: immediatelnterrupt,
lastButtonPress, selectedSong, selectedPage.

The “immediatelnterrupt” variable tracks whether or not the user has pressed a
control button and we need to navigate to a different program state. When the
immediatelnterrupt variable is true, many utility methods in the main class will

28

prematurely finish execution in order to go to the next instruction as fast as
possible. This is needed in order to exit blocking delays instantly. The
immediatelnterrupt variable becomes true when the user is in a program state
which makes use of interrupts to skip blocking delays (delay_ms function). After
every iteration of the main loop(), the variable is set back to false. The variable
can be thought of as almost a “note to the program to skip as fast as possible
until the current loop iteration has finished”. The immediatelnterrupt variable is
ALMOST ALWAYS used for navigation but there can be other uses for it as well
(like skipping instructions without changing the ProgramState).

The “lastButtonPress” variable tracks the last time the main class method
registered that a button was pressed. The is_pressed method runs on a
debounce to determine if a switch button's change in value should be
recognized. If is_pressed is true, then the method returns true and updates the
“lastButtonPress” with the current time in millis(). The debounce is used so the
program doesn't register multiple button presses at once. Note that not all
checks to see if a button is pressed in TuneStudio2560 make use of the
is_pressed method. When the is_pressed method is not used to check for button
presses, then no debounce check is used (unless a different one is specified).

The “selectedSong” and “selectedPage” globals are used entirely for the
listening mode. These variables represent what position the user is in the SD
card. The position the user is in is calculated using a formula depending on the
current page and the current selected song. More info is in the “Program States”
section.

After the globals, extern globals are defined. Extern globals are used in
TuneStudio2560 to define global variables (declared extern) which were
specified in tune_studio.h (Main Header File). The three extern variables which
are used are all representations of objects in TuneStudio2560 which should be
accessible to the entire program. These are:

LiquidCrystal I2C lcd(@x27, LCD_COLS, LCD_ROWS);
SevSegShift segDisplay(SHIFT_PIN_DS, SHIFT_PIN_SHCP, SHIFT_PIN_STCP);

Song<MAX_SONG_LENGTH> prgmSong(SPEAKER_1, DEFAULT_NOTE_LENGTH,
DEFAULT_NOTE_DELAY);

29

static SdFat SD;

The “led” object is a globally-accessible object in TuneStudio2560 which
represents the LCD attached to the Arduino. Using the Icd object, a variety of
tasks using the LiquidCrystal_I2C library can be performed (such as
Icd.print(“Hello”);)

The “segDisplay” object represents the 4-digit 7-segment display connected to
the Arduino. The segDisplay is only currently used in CreatorMode but is globally
accessible so utility methods can access it and so the display can be
cleared/reset from any class.

Finally, the “prgmSong” is a new addition as of v1.2.0-R3. Prior to this version,
songs were defined as “pointers” and each ProgramState would have a
different local variable which was a pointer to a song object. Then, when the
state was initialized, the pointer would be allocated to memory as a new Song
object. This could cause some heap fragmentation problems as dynamic
memory allocation is usually not recommended for microcontrollers. As a result,
a new “global” declaration of a single single object was made for every method
in the program to access. Making a global Song object allows the user to have a
better understanding of how much SRAM they are using (because the object is
counted into static RAM at compile time). Now, whenever a ProgramState or
method wants to access the current song, they can just call
prgmSong.<method>. However, the disadvantage (besides being slightly more
complex than new objects) is that the prgmSong variable will retain its value
across different program states and methods. This means that every time a user
leaves a state, it is important to set prgmSong’s values to their defaults.

The “SD” variable is NOT a extern declaration, rather it is a special case of a
global object. Because the SD variable is only ever needed to be accessed in
the main class (because of utility methods) it is declared “static” and is
inaccessible in other files.

30

Following the variable declarations, two methods are defined above the setup()
and loop() methods. These two methods are “is_interrupt” and “delay_ms”. The
reason these two methods are defined above the setup() and loop() is because
they are widely used throughout the program and putting them at the top of the
file draws significance to the idea that they are widely used in many utility
methods. “is_interrupt” simply returns if immediatelnterrupt is true and
“delay_ms” is a custom blocking delay function in TuneStudio2560 which is
ignored if interrupts are currently being used.

Finally, one more minor exception to the organized structure as defined above,
is this declaration.

static ProgramState * prgmState;

This is the declaration of the official “ProgramState” of the application.
ProgramStates are explained in 7.3.4 subsection but a brief overview will be
mentioned here. Every section of the application is sectioned off into
“ProgramStates”. Each program state manages user input, displays to the Icd,
and plays sounds in a different way. In order to be efficient in memory, these
different states are not accessible to each other so their global variables,
methods, and code does not take up space on the SRAM. Whenever a
ProgramState is changed, the “prgmState” variable is freed from the heap and
reallocated as a different ProgramState object.

The setup() and loop() methods are defined next. These methods are only
available inside the main.cpp file. The setup() method initializes all of the
hardware of TuneStudio2560 as well as sets up the Serial monitor (DEBUG only)
and initializes the current ProgramState to be the MainMenu. Code comments
are available for the individual actions that setup() takes, but a general note is
that setup() uses direct port manipulation to map inputs and outputs, as well as
uploads custom characters to the LCD by converting PROGMEM chars to
memory and uploading them. The loop() function uses a general execute()
method from the ProgramState (explained in 7.3.4) to run the current
ProgramState. Then the loop() function sets “immediatelnterrupt” to “false” in
case the interrupt was used. If PERF_METRICS are enabled, then the loop()

31

function also prints a variety of performance monitoring data to the Serial
monitor regarding how long the current loop iteration took.

The main class then provides a large set of “utility methods”. These utility
methods are accessible throughout all classes in TuneStudio2560. The utility
methods in the main class are the only methods which are truly “global”. Each
different utility method has its own Doxygen documentation and the utility
methods are *somewhat* grouped together if they perform actions on similar
functions in the program.

7.3.2 Main Header File

The main header file of TuneStudio2560 is “tune_studio.h” located in the
include directory. This header file is globally used throughout the program and
declares all of the globally-accessible methods (of which are defined in the main
class). Along with global methods, this file also declares many constants which
are used as well as PROGMEM constants and various macros.

The DEBUG and PERF_METRICS macros are the most notable in
tune_studio.h. The DEBUG macro should be set to “true” when the user wants
debug messages (Serial.print) to print to the console. If DEBUG is “false” then
all of the Serial prints are cut out by the preprocessor using #if tags.
PERF_METRICS macro is used on top of DEBUG to provide debugging
messages related to performance. PERF_METRICS prints out occasional
messages to the Serial monitor regarding RAM usage as well as enables the
code at the bottom of the loop() which prints out various indications regarding
the performance of the ProgramState. The PERF_METRICS macro is very
useful when the user is trying to optimize a ProgramState which relies on high
iterations per second (IPS) to work well. Enabling DEBUG or PERF_METRICS
(in addition to increasing SRAM and program memory usage) decreases the
speed of the program as the application must now use CPU clock cycles to print
to the Serial monitor.

32

When PERF_METRICS is enabled, the loop() method prints the following each
iteration of the main loop.

Note that none of the below are impacted by the Serial prints from performance metrics
as the total time of completion is calculated before the following messages are printed.
Debug messages impact performance though.

- The total time in microseconds (us the loop took to complete).

- Current RAM usage (in Bytes).

- Current percent of RAM utilization (in percent).

- Clock Cycles the loop took to complete.

- How fast the loop is executing per second (lterations Per Second [IPS])

7.3.3 LCD & Segment Display

The Liquid Crystal 20x4 12C Display is used in the program to communicate
feedback to the user via text. Every program state in the program utilizes the Icd
global object which is declared in tune_studio.h and defined in main.cpp. The
4-digit 7-segment display, which is also globally defined, is used to
communicate the current “pitch” the user has selected in CreatorMode (see
7.3.4 for more info).

The “Icd” object is controlled through a variety of utility methods in the main
class. The utility methods to control the Icd in the main class utilize the basic
methods provided by the LiquidCrystal_I2C library. Although the regular

(library-provided) led.print(F(str)); is frequently used, two utility methods are

provided by the main class for special cases of printing text. These are:
void print_lcd(const _ FlashStringHelper * text, uint8_t charDelay) {...}

void print_scrolling(const __ FlashStringHelper * text, uint8 t cursorY, uint8_t
charDelay) {...}

As seen by the code block, both of these methods utilize the
__FlashStringHelper* which is provided by the Arduino main library (Arduino.h)
to conveniently store constant strings in PROGMEM. The print_lcd method
takes in a Flash String and a delay, then it clears the Icd and prints out the entire
string character by character with a delay specified by the charDelay. The

33

method starts printing characters at Row 0, Column 0, and then moves until
Row 3, Column 19. When the method detects it has reached the end of the Icd,
it clears the screen and restarts at Row 0, Column 0 and continues printing the
string. The print_scrolling is similar to the print_lcd, but only uses ONE row to
print text and does not clear the Icd prior to execution. When the text begins, the
method prints the first 20 characters of the string and then scrolls to the right by
one character each charDelay milliseconds until the string has been fully read.

Controlling the segment display is simple. No utility methods are provided for
the segment display, and the default library methods from the SevSegShift
library are used for controlling it. An important reminder is that the segment
display needs to be constantly cleared due to the fact that the shift registers
may hold garbage data from a previous update. Without clearing the display
constantly, extra “garbage” data might stay on the segment display. If the
segment display updates too slowly (due to a low IPS) then the segment display
flickers.

7.3.4 Program States
The concept of program states are very important to understand in
TuneStudio2560. A “ProgramState” refers to a class located in state.cpp and
declared in “state.h”. A program state represents a parent class in which all
program states in the application inherit from. This parent class allows a global
“prgmState” variable (main.cpp) which can be freed from memory and then
reallocated as a new program state. When this variable is reallocated the
application begins executing the new program state immediately. The concept of
a ProgramState is simple.
- Has an enum which represents the type of state the class is (ex. Main
Menu, etc)
- Has a public method get_state which returns the enum.
- Has a variable which tracks whether or not the init() method has been run.
- Has a private method known as init() which is executed when the
ProgramState first runs. When executed, the variable which tracks the
init() is changed to “true”.

34

- Has a public method has_initalized which returns if the init() method has
been run.

- Has a private method loop() which contains the code that should be run
infinitely.

- Has a public method execute() which dictates if the init() or if the loop()
method should be run. Also runs a chunk of code which the developer
wants to run before every state change (for example, clear the Icd).

Every different program state inherits the ProgramState class and defines its
own init() and loop() methods. Similarly, each different program state class also
defines its own StatelD, an enum which allows the fast comparison between
program states. The 5 different program states in the application are declared in
the “states.h” header file and initialized in their respective “.cpp” files in the
“src/studio-libs/states” directory.

The “states.h” class also contains the global variables that each program state
can use as well as the individual methods that each program state can use. This
means that any instance of ProgramState can indeed have its own
class-accessible variables and methods.

Everytime the user changes “prgmState” the previous memory is freed and a
new instance is allocated. This means that any data in the previous object is
irrelevant (such as if the program state ran the init() method). The init() method
should be used similar to setup() but instead of initializing data for the whole
program, data is only initialized for the specific program state. The loop()
method is the code which should be run on repeat.

7.3.5 Notes & Pitches

In order to play audio, the piezo buzzer must be interacted with in code. This
speaker takes in values as unsigned 16-bit integers and converts them into a
square wave to play. Instead of having the user add individual frequencies to a
song, we can use human readable “pitches” instead. Using raw frequencies
would be far too complicated and anti-user so we convert various frequencies to
pitches on the standard chromatic scale. Ex: GS2 -> 104 and 104 -> GS2. This

35

way, an intuitive way of providing sounds can be given to the user and when the
sounds need to be played, program methods can convert the strings to integers
and vice versa.

The computer does not know how to convert “104” to “GS2”. A lookup table™ is
needed in order to provide a database of various pitches and frequencies. This
table is referred to as “PROGRAM_NOTES” in the tune_studio.h file and is
globally-accessible.

The “PROGRAM_NOTES” array contains an array of C++ struct
“buttonFrequencies_t” which in itself is a pin (8-bit int) and an array of C++
struct “note_t". “note_t” is a struct which contains a char pointer “pitch” which
refers to a string in memory and an unsigned 16-bit integer value which refers to
the frequency to play.

The PROGRAM_NOTES declaration and the two structures code is provided

below for reference.
typedef struct note {
const char * const pitch;
const uintl6_t frequency;
} note_t;

typedef struct buttonFrequencies {
const uint8 t pin;
const note_t notes[TONES_PER_BUTTON];

} buttonFrequencies_t;

const buttonFrequencies_t PROGMEM PROGRAM_NOTES[TONE_BUTTON_AMOUNT] {...}

const note_t PAUSE _NOTE = { "PS", (const uintle t)1 };
const note_t EMPTY_NOTE = { "@000", (const uintl6_t)o };

Figure: Shows code from tune_studio.h including how the various structures are defined.

3 View a table of pitches and frequencies.

: "

36

https://github.com/devjluvisi/TuneStudio2560/wiki/For-Users#supported-pitches

A “note” is a structure which contains a PITCH and FREQUENCY.

A “buttonFrequencies_t” is a structure which contains the PIN of a tune button
and an ARRAY of notes that the tune button can play.

The “PROGRAM_NOTES” is an ARRAY of buttonFrequencies_t of length 5 (5
tune buttons) and defines all of the notes that each tune button can play.

In addition to the “PROGRAM_NOTES” array, two additional notes are defined.
PAUSE_NOTE: A note which represents a “block” in the song (delay) for
PAUSE_DELAY milliseconds (500 default).

EMPTY_NOTE: A note which represents a frequency of “0” and has not been
defined. Usually used to indicate the ending of a song.

PROGRAM_NOTES is stored in PROGMEM so the values in the array must be
retrieved via the various “pgm” methods in Arduino.

The individual pitch strings in PROGRAM_NOTES are just pointers to actual
string data. Storing those strings directly in the PROGRAM_NOTES would take
up a lot of SRAM as constant data. In order to store the strings in PROGMEM, a
“pitches.h” file is defined. This file has every possible pitch in it defined in
PROGMEM. Then the PROGRAM_NOTES references these various PROGMEM
variables. When a note needs to be retrieved from PROGMEM the pgm_pcpyr
method should be used. This method has a static “buffer” to keep track of its
return value. This method converts a X and Y index in the 2D
PROGRAM_NOTES array and pulls out the specified “pitch” at that index.

{BTN_TONE_1, {{pitch_be, 31}, ...

const char pitch_e5[] PROGMEM = "E5";
const char pitch f5[] PROGMEM = "F5";
const char pitch fs5[] PROGMEM = "FS5";

Figure: Shows how notes are defined in PROGRAM_NOTES as well as how pitch strings are saved in
PROGMEM.

37

In order to convert from pitch to frequency and frequency from pitch, two

methods are used.
note_t get_note_from_pitch(const char *
const pitch) {...}

note_t get note_ from_freq(const uintl6 t frequency) {...}

These two methods perform the opposite actions internally but return the same
value: a note structure with the correct “pitch” and “frequency” attributes.

7.3.6 Songs
Songs are represented by the global “prgmSong” variable (as of v1.2.0-R3).

This global variable is an object from the Song class and should be used by any
method who wants to use the current song being used by the program. A song
object contains the following internal attributes:

Pin: What pin the sounds from the songs should be played on.

Note Delay: The delay (ms) between each note playing.

Note Length: The length (ms) that each note plays for.

Current Size: The current size of the song.

Song Data: An array of unsigned 16-bit integers which represent various
frequencies in the song that should be read.

The song class has two important aspects that need to be mentioned.
- song_size_t type definition.
- template<> structure.

The “song_size_t” typedef represents either a uint8_t or a uint16_t. This variable
should be changed depending on the value of the constant MAX_SONG_SIZE
in “tune_studio.h”. Increasing the MAX_SONG_SIZE above 255 requires
changing the song_size_t to uint16_t (this takes up more SRAM and program
space).

The template<> structure is used to define how large songs are allowed to be in
the Song class. This allows the reduction of SRAM usage. The template<> is set
to template<MAX_SONG_SIZE> by default.

38

The “song.cpp” class contains various methods for messing with songs such as
adding notes, removing notes, getting the size, playing it (blocking), setting
attributes, etc. It is important that every time a new state is switched to the
“prgmSong” variable should be cleared using clear() method. Some program
states (listening mode) have different ways of playing back songs instead of the
play_song() method in order to prevent blocking with delay_ms.

7.3.7 SD Card

Interaction with non-volatile storage is done through main class utility methods.
These utility methods make use of the SdFat library for writing and reading.
Important data about the SD card is listed below:

- The SD card must be FAT16/FAT32 formatted.

- The names of the song files on the SD card must be 8 characters in length

or less (excluding .txt extension).

If the format of the SD card is wrong, TuneStudio2560 will blink a red status led
and display an error message on the LCD.

Song files are saved using the following parameters:
- File saved using the “.txt” extension.
File saved using A-Z, 0-9, and underscores only.
Files saved using 8 characters MAX in length (1 min).
File saved using a custom layout so it can be read from and modified
easily.
File has at least 8 notes in it.
Song notes are saved in their human readable pitch form (Like FS2) and
are parsed into integers when the file is loaded from storage.
Song files are read using the following parameters:
- File name is below 8 characters.
File is a “.txt” file.
File name using A-Z, 0-9, and underscores only.
File has the correct internal layout.
Number of notes in the file is less than the max allowed notes in the
program.
File has at least 8 notes.

39

- File has proper attributes for TONE_DELAY and TONE_LENGTH.

If any file does not follow the naming and file extension conventions, it is ignored
when trying to select songs from the ListeningMode. If a song has correct
naming conventions but bad data, then the status LED will blink red and an error
message will be displayed. The song will not be played.

In addition to the saving/reading of song files, the SD card also creates a
“README.TXT” file which contains important information about editing song
files as well as some links. In PRGM_MODE==0, not all of the README is
generated in order to save program space.

7.3.8 Additional Information

ProgramStates in the application are designed to be as efficient in both
program space and ram usage as possible. Each ProgramState’s individual
methods and variables are not accessible from other ProgramStates.

The “song_size_t” type definition is automatically changed in most instances
when the PRGM_MODE is changed. Each PRGM_MODE defines a different
MAX_SONG_SIZE macro. However when changing PRGM_MODE, the
“song_size_t” must also be updated in the song.h file. This is currently a bug
with the preprocessor and is being worked on.

Various string constants in the program (such as README and instructions) are
cut out in PRGM_MODE==0. PRGM_MODE==0 is intended for a future port to
the Arduino Uno as it is the only program mode which fits into the Arduino’s
RAM and Program Space requirements.

7.4: Debugging

7.4.0 General Information

Debugging is important to finding bugs and adding features to TuneStudio2560.
Most debugging information was mentioned in the “Program Modes”
subsection. In general, DEBUG macro should be enabled for console prints and
any call to Serial. XXX should be within an #if preprocessor check.

40

7.4.1 Debug Macro

Enables all of the Serial prints to the console as well as the Serial monitor itself.
Enabling the DEBUG macro will slow code execution as the CPU has to print to
Serial instead of executing the next instruction.

7.4.2 Performance Metrics Macro

Prints out performance metrics to the serial monitor (Requires DEBUG macro to
be true) about the current RAM utilization as well as various other performance
metrics about how fast the current program loop is executing.

When PERF_METRICS is enabled, the loop() method prints the following each
iteration of the main loop.
Note that none of the below are impacted by the Serial prints from performance metrics
as the total time of completion is calculated before the following messages are printed.
Debug messages impact performance though.

- The total time in microseconds (us the loop took to complete).

- Current RAM usage (in Bytes).

- Current percent of RAM utilization (in percent).

- Clock Cycles the loop took to complete.

- How fast the loop is executing per second (lterations Per Second [IPS])

7.5: Unit Testing

7.5.0 Prelude

Unit Testing is a separate part of TuneStudio2560 which is used for testing the
hardware. The “test_hardware.cpp” file contains the code to perform this
action. Unit testing is done with the “Unity” library. The “Unity” library is required
to perform the Unit test but is not required to upload/run the program.
Important: Currently unit testing has bugs and may not work, the code is still
available and does work but some bugs need to be worked out.

7.5.1 How to Use

41

In order to run the hardware unit test, navigate to the project and then press
CTRL+SHIFT+P to enter the command palette. Once there type “PlatformlO:
Test” and click the first option. This will run the unit test. For the hardware unit
test it is important you follow the on screen instructions to make sure the
hardware is working as the computer does not know.

7.5.2 Future Plans
Future plans are to explain Unit Testing to program methods as well instead of
just verification of hardware.

42

Reference Website

TuneStudio2560 has its own reference website! The website is hosted on
GitHub pages and is used to provide additional version information,
changelogs, downloads, pictures, videos, and Doxygen documentation.
The webpage is constructed using basic HTML5 with inline CSS and some
JavaScript (JavaScript is not required to load the webpage). The website
also has dark mode!

Visit it — https://devjluvisi.github.io/TuneStudio2560/

The website also contains the link to MakerStudio2560 (NEW). View in
section 9.

43

https://devjluvisi.github.io/TuneStudio2560/

MakerStudio2560

9.0: Introduction & Purpose

One of the newest and most transformative features to the
TuneStudio2560 project is . MakerStudio2560 is a
comprehensive song creation, playback, and editing tool made specifically
for TuneStudio2560 by the original programmer (myself).
MakerStudio2560 is a client-side JavaScript (ES6) website where users
can develop and edit their own songs without having to use
TuneStudio2560. MakerStudio2560 follows the same basic pattern for
creating songs on TuneStudio2560 but provides a variety of additional
features due to the fact that MakerStudio2560 is running on a PC and is
not limited by its hardware. MakerStudio2560 is completely backwards
compatible with TuneStudio2560 so any songs you develop on
TuneStudio2560 you can playback on MakerStudio2560 and vice versa.
MakerStudio2560 allows you to download your song file that you made
and it is automatically compatible and ready for playback on an SD card.

9.1: How to Use

A full YouTube tutorial on how to use MakerStudio2560 is available on the
reference site.

View text instructions on the “View Instructions” details tag at the top of the
webpage.

9.2: Code
9.3.0 Prelude

MakerStudio2560 is developed entirely in ES6 JavaScript. The code in
MakerStudio2560 is approx. 1000 lines. The code is not minified when it is used.

9.3.1 JavaScript Adoption
In order to “port” TuneStudio2560 to JavaScript some changes were made and
some inconsistencies can exist. The speaker on your computer is not the same

44

http://t
http://t

as the piezo passive buzzer which plays sounds on the Arduino. However a
audio library is used to generate square waves and play frequencies (hz) back to
you. The JavaScript port of TuneStudio2560 took about 1-2 weeks to develop
entirely.

9.3.2 Basic Overview
MakerStudio2560 has all of the features TuneStudio2560 has when it comes to
making and playing back songs. Along with these features, MakerStudio2560
has extra features as well:

- Auto-Save to local storage.

- Edit and save an “Author” of a song.

- Save “Creation Date” of a song.

- Save “Last Edit Date” of a song.

- Edit and remove notes at any point in the song.

- *Unlimited* amount of notes.

- Adjust volume when playing the song back.

- View the time passed (in seconds) and max time (in seconds) of a song

when playing back a song.

- Adjust Auto-Save Settings.

- Adjust how the website looks (dark mode included).

- Edit previously saved songs.
The website is quite user-friendly to use and a list of instructions is provided on
the website as well.
Users can open saved songs on their Arduino using the “Choose File” button or
make a new song using the “Create File”. Users who have previously been
editing a song can click on the “Resume File” button (Auto-Save).

9.3.3 Documentation

A full YouTube tutorial on how to use MakerStudio2560 is available on the
reference site.

View text instructions on the “View Instructions” details tag at the top of the
webpage.

45

http://t
http://t

The JavaScript code contains comments describing methods and functions.
The entire code for MakerStudio2560 is available on the GitHub (/docs folder).
MakerStudio2560 is not as thoroughly documented as TuneStudio2560 is but if
you understand how TuneStudio2560 works, MakerStudio2560 is similar.

46

Project & Code Documentation
10.0: Prelude

TuneStudio 2560 contains a very large amount of documentation for its
code. Besides this product brief, users can view both a User Guide as well
as a Developer Guide on the wiki. If users want method by method
documentation then they can view the Doxygen documentation.

10.1: Inline Documentation

TuneStudio2560 has comments throughout almost all of its code. Each
method in TuneStudio2560 is documented in its respective header file. In
addition, all global variables are documented and each file also contains a
Doxygen header comment describing what the file does. Every directory
outside of src also contains a “README” file describing the contents in the
directory.

10.2: GitHub Wiki
View the GitHub for documentation.

e User Guide

e Developer Guide

e Build It

e README
10.3: Public Doxygen Documentation
TuneStudio2560 is commented using the Doxygen standard for comments
(similar to JavaDoc). A website is generated from these Doxygen
documents and is publicly available for all users to look at. The website is
highly recommended for users who want a method-by-method and
variable-by-variable documentation.

— Public Doxygen Documentation «

10.4: YouTube Tutorials

47

https://github.com/devjluvisi/TuneStudio2560/wiki/For-Users
https://github.com/devjluvisi/TuneStudio2560/wiki/For-Developers
http://v
https://github.com/devjluvisi/TuneStudio2560/wiki/For-Users
https://github.com/devjluvisi/TuneStudio2560/wiki/For-Developers
https://github.com/devjluvisi/TuneStudio2560/wiki/Build-It
https://github.com/devjluvisi/TuneStudio2560/blob/master/README.md
http://v

A variety of YouTube tutorials for TuneStudio2560 are available on the
reference website for viewing. The site also contains real life images of the
working project that | built.

48

https://devjluvisi.github.io/TuneStudio2560/

Future Suggestions

For future suggestions to make TuneStudio2560 better, either request a
pull on GitHub or email me directly! | respond to all personal emails from
interested developers and users. A list of future planned items is available
on the reference website.

49

https://devjluvisi.github.io/TuneStudio2560/

Conclusion

| hope you have enjoyed reading the product brief for TuneStudio2560.
This document took a long time to make as a full time student! This project
was also the biggest project | have ever personally completed in my
programming career up to this point. | learned a lot about the Arduino as
well as embedded systems. For any future suggestions, comments, or
changes to this product brief you want to see, email me or send a private
discord message.

jluvisi2021@gmail.com
Interryne#0943

50

mailto:jluvisi2021@gmail.com

Please note that the following product brief was generated for TuneStudio
v1.2.2-R4. Later released versions may have changes or updated information that
conflicts with this document.

End of official product brief for TuneStudio2560
and MakerStudio2560.

GitHub: https://github.com/devijluvisi/TuneStudio2560
Website: https://devijluvisi.github.io/TuneStudio2560/
Document assembled 9/11/2021.

Last modification on 9/15/2021.

51

https://github.com/devjluvisi/TuneStudio2560
https://devjluvisi.github.io/TuneStudio2560/

